FCP

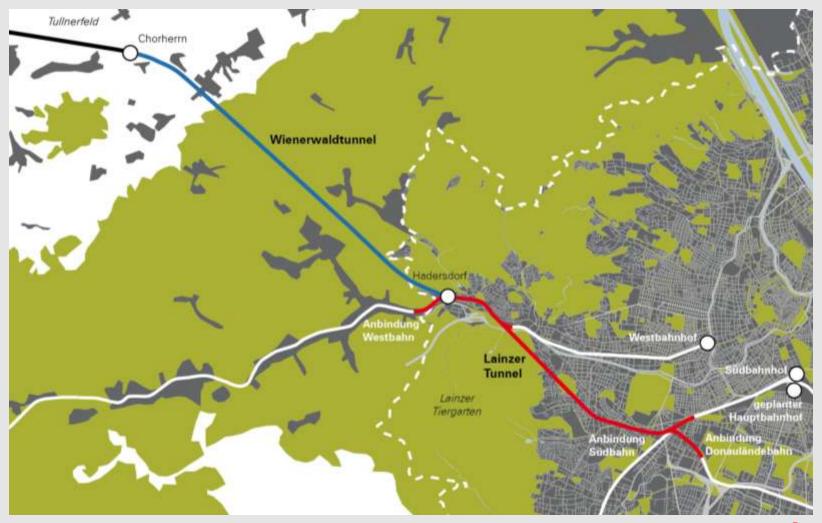
720 m lange Brücke im Tunnel – Masse-Feder-System Lainzer Tunnel

Brückentagung 2011, 18. – 20. Mai 2011

Dipl.-Ing. Andreas **PECHHACKER** ÖBB Infrastruktur AG Dipl.-Ing. Dr.techn. Dieter **PICHLER** FCP – Fritsch, Chiari & Partner ZT GmbH

Inhalt

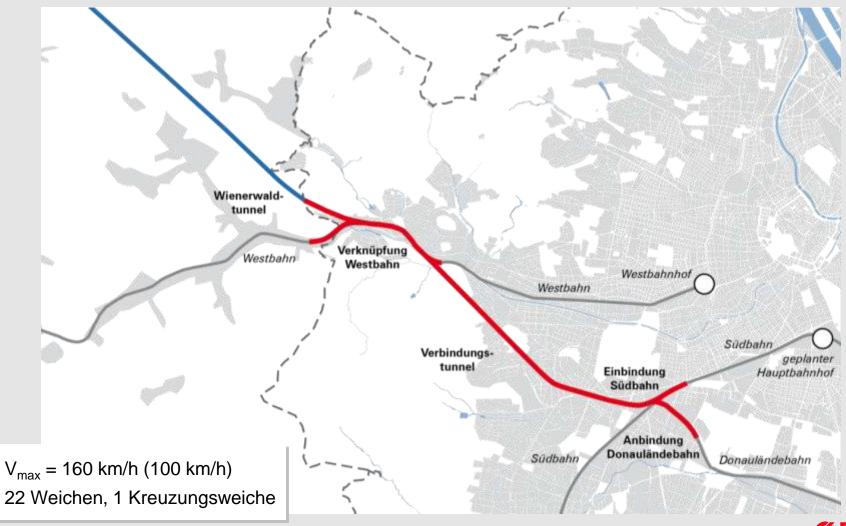
- Allgemeine Randbedingungen
- Erschütterungen und Sekundärschall
- Ausführung des Masse-Feder-Systems
- Messungen > Qualitätssicherung
- Instandhaltung


Allgemeine Randbedingungen Übersichtslageplan

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems


Allgemeine Randbedingungen Übersichtslageplan

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems

Oberbausystem Spurführung und Lastansätze

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems

Messungen > Qualitätssicherung

Lastansätze lt. RVE 05.00.12

FF-System (FF-Dienstbehelf)

• Vertikallasten: UIC71, SW/2 mit $\alpha = 1.0$ und $\Phi = 1.67$

• Achslast: $P_{\text{max, statisch}} = 250 \text{ kN}$

• Radlast: $Q_{max, dyn} = 261 \text{ kN}$

 $\begin{array}{ll} Q_{\text{min, dyn}} & = 157 \text{ kN} \\ Q_{\text{max, ex}} & = 350 \text{ kN} \\ Q_{\text{min. ex}} & = 210 \text{ kN} \end{array}$

Seitenstoß:
H = 100 kN mit Gleisverteilwirkung

H ≥ 60 kN je Befestigungsachse

MF-System (= Brücke: EN1992-2, FF-Dienstbehelf)

• Vertikallasten: UIC71, SW/2 mit α = 1,21 und Φ = 1,30

gleichmäßige Temperaturänderung: 10 K

Temperaturgradient: 5 K

Horizontallasten – quer: Fliehkraft und Seitenstoß

Horizontallasten – längs: Bremsen und Anfahren

Oberbausystem Spurführung und Lastansätze

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems

Messungen > Qualitätssicherung

Fahrdynamik It. RVS 05.00.12

FF-System

w = 1,3 0,2 mm für Triebfahrzeug 1044 (bzw. 1116) \Rightarrow $c_{Stützpunkt} = 19$ kN/mm, $c_{GTP} = 0,5$ N/mm³ Einsenkungsbedingung:

1.437 mm Spurweite:

Schienenneigung: 1:40 im Gleis, 1 : ∞ in Weichen bis V = 250 km/h

Äquivalente Konizität ≤ 0,20 für Schienenprofil 60E1 (Grenzwert lt. TSI INS für Gleise mit V > 160 km/h)

MF-System

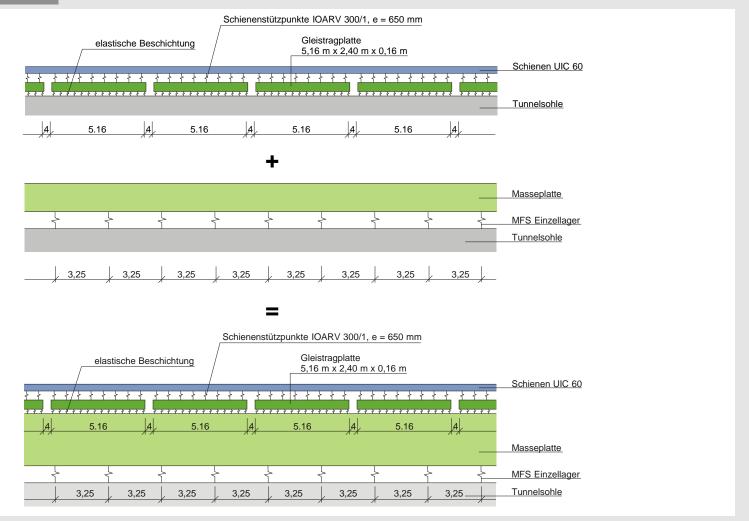
Einsenkungsbedingung: $W_{max} \leq 10 \text{ mm}$

≤ 2 ‰ Freiland, ≤ 3 ‰ Tunnel Tangentenneigung:

Verhältnis Einsenkung zu Biegelinienlänge: ≤ 0.4 ‰

Verwindung: ≤ 0,5 ‰

≤ 0,25 mm Rissbreitenbeschränkung:

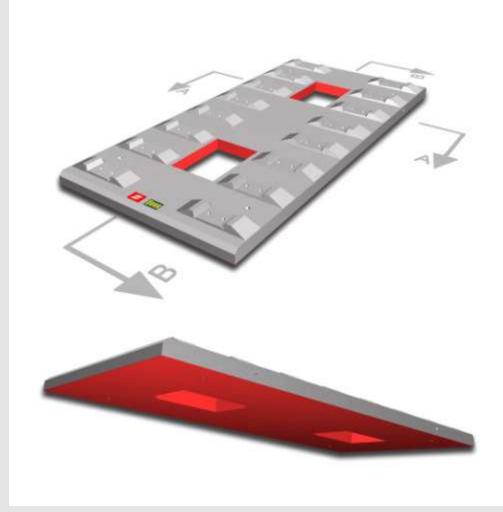

Oberbausystem Zusammenwirken FF – MFS

Allgemeine Randbedingungen

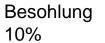
Erschütterungen und Sekundärschall

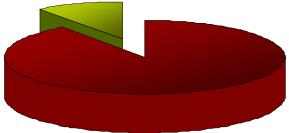
Ausführung des Masse-Feder-Systems

Elastisch gelagerte Gleistragplatte Bauart ÖBB – PORR



Allgemeine Randbedingungen

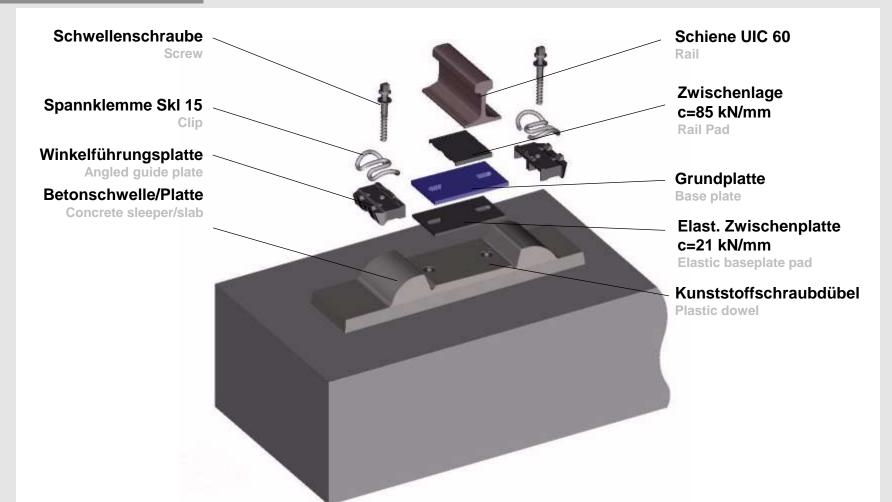

Erschütterungen und Sekundärschall


Ausführung des Masse-Feder-Systems

Messungen > Qualitätssicherung

Elastizitäten ohne Unterbau FF – Gleistragplatte

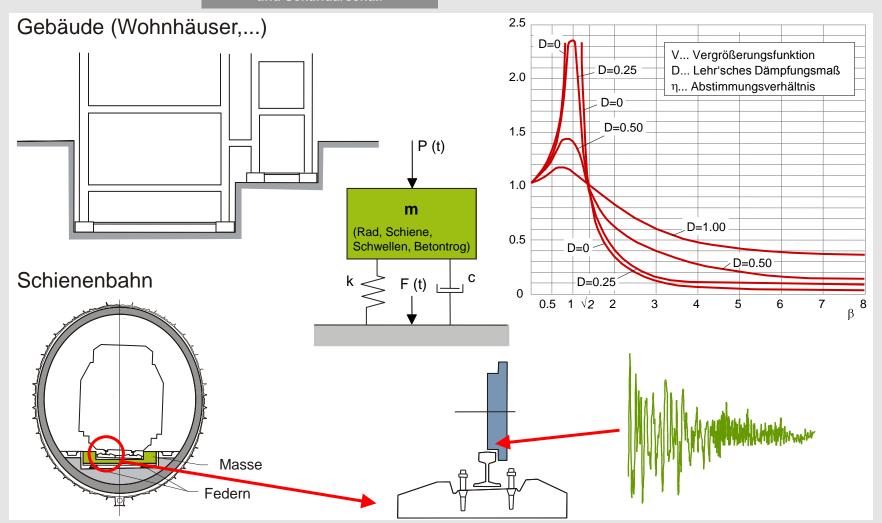
Schienenbefestigung Zwischenlagen 90%


Elastisch gelagerte Gleistragplatte Schienenbefestigung loarv 300-1

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems


Erschütterungen und Sekundärschall Masse-Feder-System

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems

Erschütterungen und Sekundärschall Prognose – Vorgangsweise

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems

- Festlegungen der Schutzziele
- Baudynamische Bewertung der Bebauung
- Geoseismik → Datenbank → Vorabschätzung
- Admittanz- und Ausbreitungsmessungen im Tunnel
- Feinabstimmung der Maßnahmen abgestimmt auf Betriebsprogramm

Erschütterungen und Sekundärschall

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems

Messungen > Qualitätssicherung

Schutzziele sind abhängig von:

- Vorbelastung
- Gebietskategorie (Flächenwidmung, Bebauung)
- Zeit (Tag, Abend, Nacht, Wochenende)

Grenzwerte/Anhaltswerte in ÖNORM S 9012 definiert (gemäß EB-Bescheid werden teilweise noch strengere Grenzwerte eingehalten)

Erschütterungen und Sekundärschall Prognose – Vorgangsweise

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems

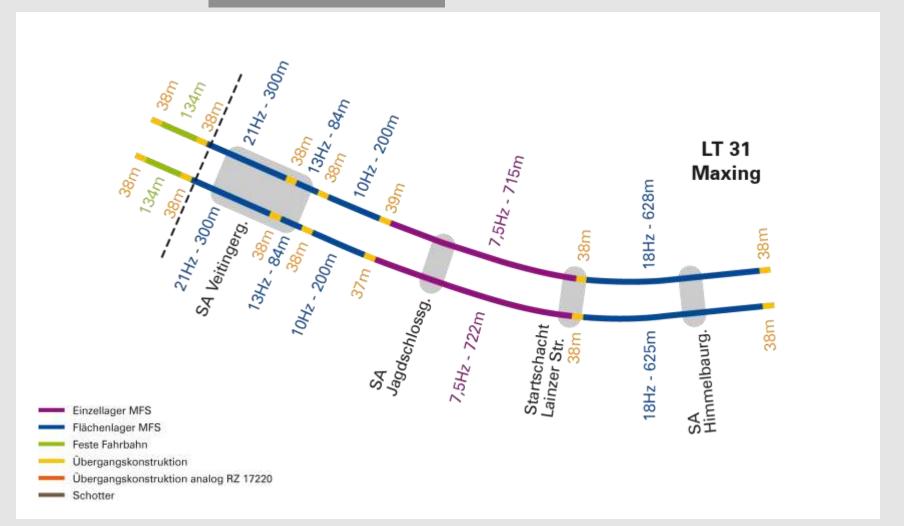
- Festlegungen der Schutzziele
- Baudynamische Bewertung der Bebauung
- Geoseismik → Datenbank → Vorabschätzung
- Admittanz- und Ausbreitungsmessungen im Tunnel
- Feinabstimmung der Maßnahmen abgestimmt auf Betriebsprogramm

Erschütterungen und Sekundärschall VibroScan Schwingungsgenerator

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

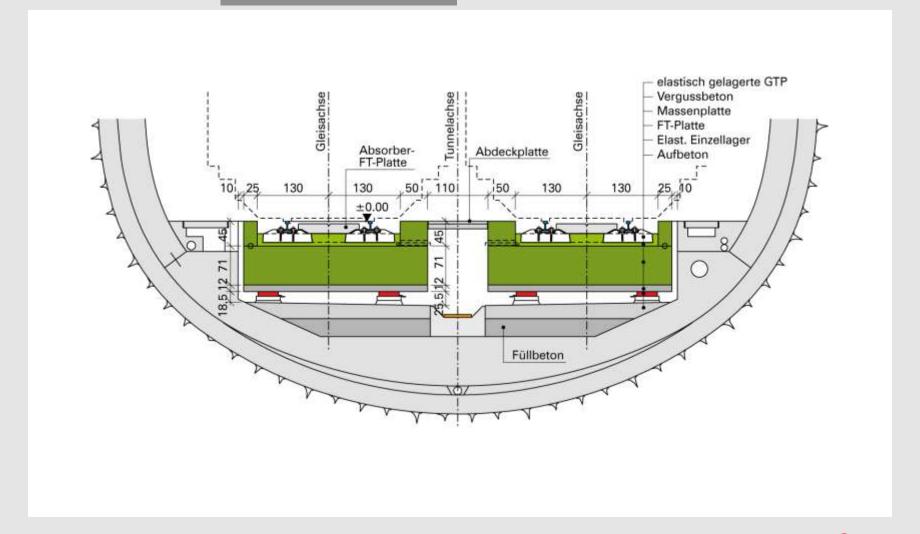
Ausführung des Masse-Feder-Systems


Erschütterungen und Sekundärschall Übersicht MFS und FF Lainzer Tunnel Mitte

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

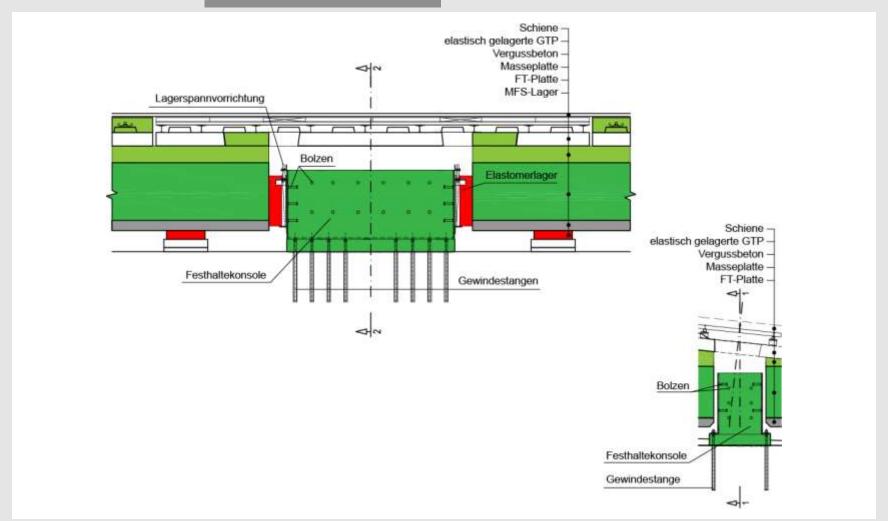
Ausführung des Masse-Feder-Systems


Erschütterungen und Sekundärschall QS Lainzer Tunnel mit MFS Einzellagerung

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

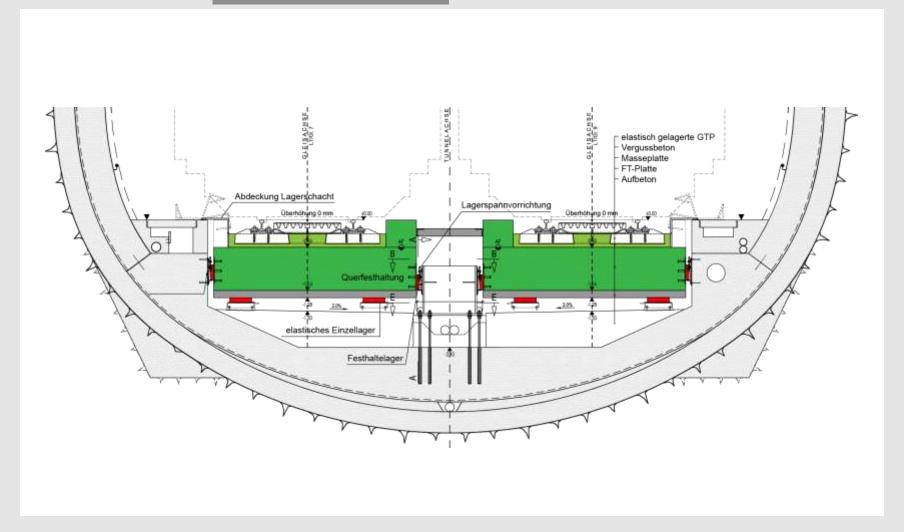
Ausführung des Masse-Feder-Systems


Erschütterungen und Sekundärschall Längsschnitt mit Längsfesthaltung

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems


Erschütterungen und Sekundärschall Querschnitt mit Querfesthaltung

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems

Erschütterungen und Sekundärschall Einzellagerung

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des **Masse-Feder-Systems**

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems

Allgemeine Randbedingungen

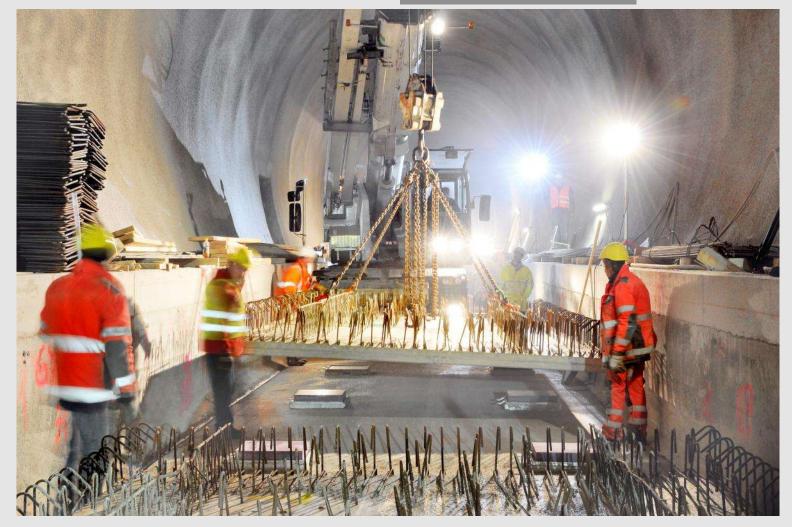
Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems



Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems



Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems

Messungen > Qualitätssicherung

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems

Messungen > Qualitätssicherung

Qualitätssicherung Masse-Feder-System

Eignungsprüfung, Eigenüberwachung, Lager:

Fremdüberwachung

Eigenfrequenzen: Messungen während Bauphase

Immissionen: Messungen nach Inbetriebnahme

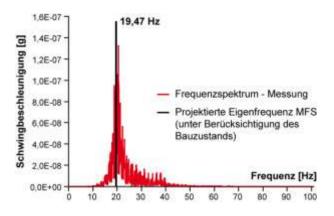
- Qualitätssicherung Gleislage
 - vor Betonage
 - nach Betonage
 - vor Inbetriebnahme (Gleismesswagen)
- Qualitätssicherung Feste Fahrbahn Verguss
 - Betontechnologie
 - Vergussversuche
 - Endoskopie

Messungen > Qualitätssicherung Masse-Feder-System

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems


Messungen > Qualitätssicherung

Prüfung einer Lagerprobe mit Auswertung

Eigenfrequenzmessung

Immissionsmessungen im Regelbetrieb

Messungen > Qualitätssicherung Gleislage

Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

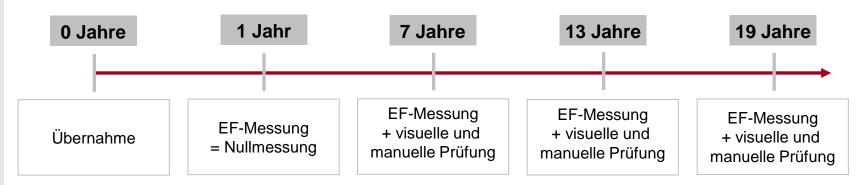
Ausführung des Masse-Feder-Systems

Messungen > Qualitätssicherung

Anforderungen

- Fehllage (Grenzwert = Sollwert ±5 mm)
- Fehlhöhe (Grenzwert = Sollwert ±5 mm)
- Spurweite (Grenzwert = 1437 mm +1 mm / -2 mm)
- Abweichung des Stützpunktabstandes $(Grenzwert = 650 mm \pm 10 mm)$
- Angabe des Richtungs- und Längshöhenverlaufs
- ⇒ Verteilung der Fehler: Normalverteilung

Instandhaltung


Allgemeine Randbedingungen

Erschütterungen und Sekundärschall

Ausführung des Masse-Feder-Systems

Messungen > Qualitätssicherung

Inspektionstätigkeit und Inspektionshäufigkeit

Die Eigenfrequenzmessungen sollen in Zusammenhang mit den vollständigen Tunnelscans durchgeführt werden (alle 6 Jahre).

Alternativ zur Auswertung der Tunnelscan-Daten können für Beobachtungen von Setzungen und seitlichen Bewegungen der MFS-Tröge auch die Daten der Gleismessfahrzeuge der ÖBB eingesetzt werden.

FCP

720 m lange Brücke im Tunnel – Masse-Feder-System Lainzer Tunnel

Brückentagung 2011, 18. – 20. Mai 2011

Dipl.-Ing. Andreas **PECHHACKER** ÖBB Infrastruktur AG Dipl.-Ing. Dr.techn. Dieter **PICHLER** FCP – Fritsch, Chiari & Partner ZT GmbH