

UHPC BRÜCKEN-ENTWÄSSERUNGSTOPF

ENTWICKLUNG, EINBAU UND MONITORING EINES PROTOTYPEN

UHPC - BRÜCKENENTWÄSSERUNGSTOPF

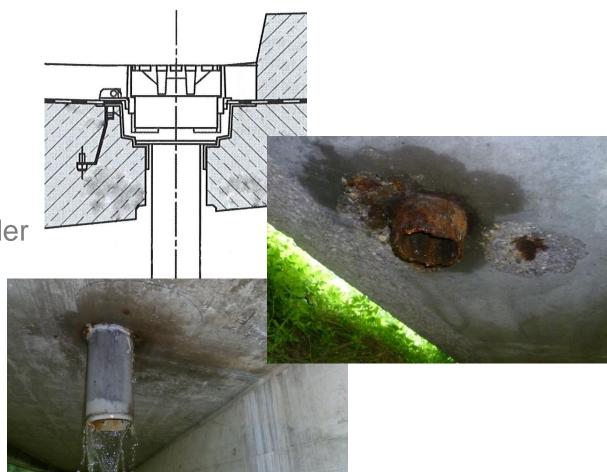
Eine gemeinsame Machbarkeitsstudie von

- Amt der Steiermärkischen Landesregierung-FA 18B
- Planungsbüro Wörle+Sparowitz
- Institut f
 ür Betonbau TU Graz

Das Vorhaben wurde von FFG finanziell unterstützt

- Herzlichen Dank -

INHALT

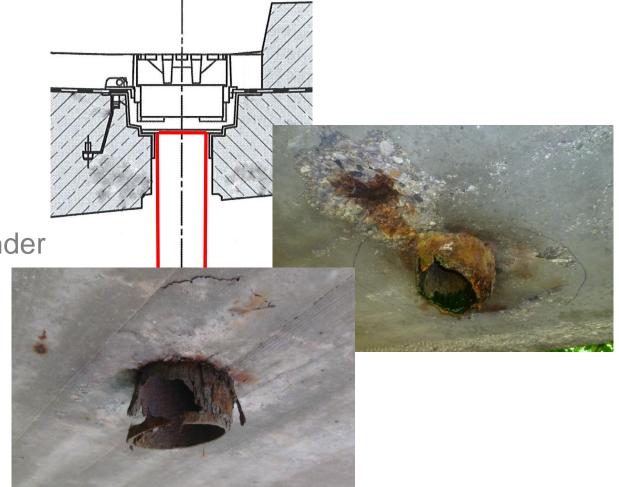

- Problemstellung
- Entwicklung von UHPC
- Herstellung des Prototypen
- Einbau
- Monitoring
- Schlussfolgerung

- Umläufigkeit
- Sinter
- Korrosion

 Kurzer oder fehlender Ablaufstutzen

Ablagerungen

- Umläufigkeit
- Sinter
- Korrosion
- Kurzer oder fehlender Ablaufstutzen
- Ablagerungen



- Umläufigkeit
- Sinter
- Korrosion

Kurzer oder fehlender

Ablaufstutzen

Ablagerungen

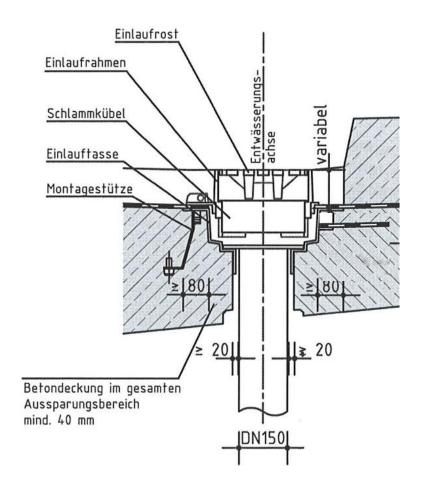
- Umläufigkeit
- Sinter
- Korrosion

Kurzer oder fehlender

Ablaufstutzen

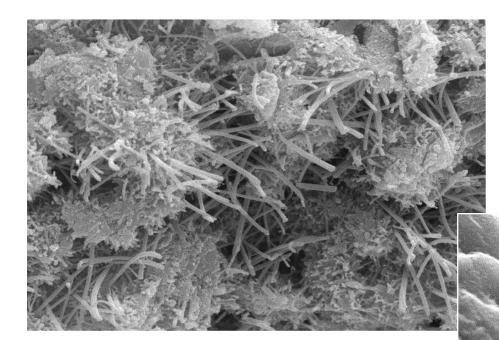
Ablagerungen

WIE KÖNNEN DIESE SCHÄDEN VERHINDERT WERDEN?



Ultra-High-Performance Concrete (UHPC)

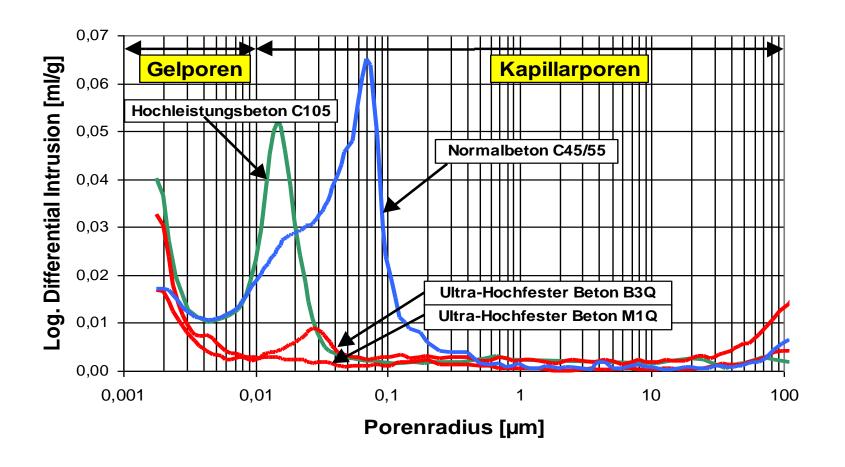
PLANUNGSZIELE FÜR DIE BRÜCKENENTWÄSSERUNG



- Leichter, preiswerter und höhere Lebensdauer
- Verhindern von Schäden am Tragwerk
- Geringer
 Erhaltungsaufwand
- Radfahrersicherheit

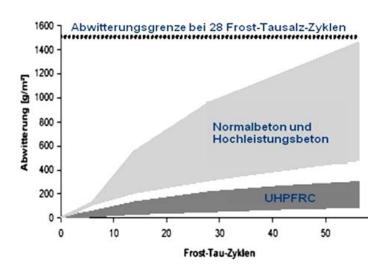
22.06.2015 Nguyen Viet Tue

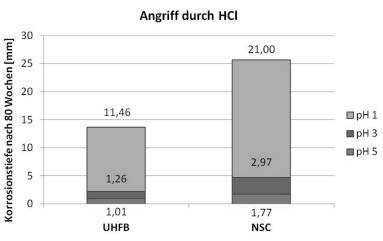
MIKROSTRUKTUR VON UHPC

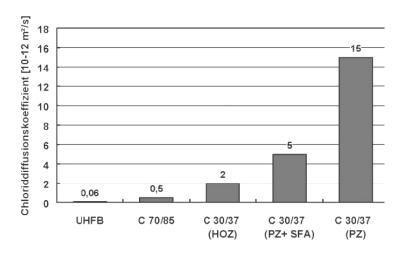

UHPC: SEM-picture width of picture: 7 µm

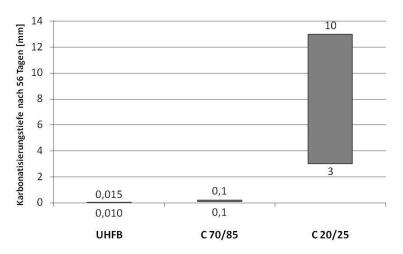
Normal concrete:

SEM-picture width of picture: 23 µm

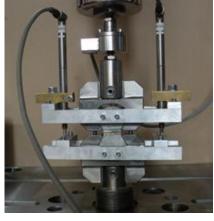



PORENVERTEILUNG IM UHPC





Dauerhaftigkeitseigenschaften von UHPC

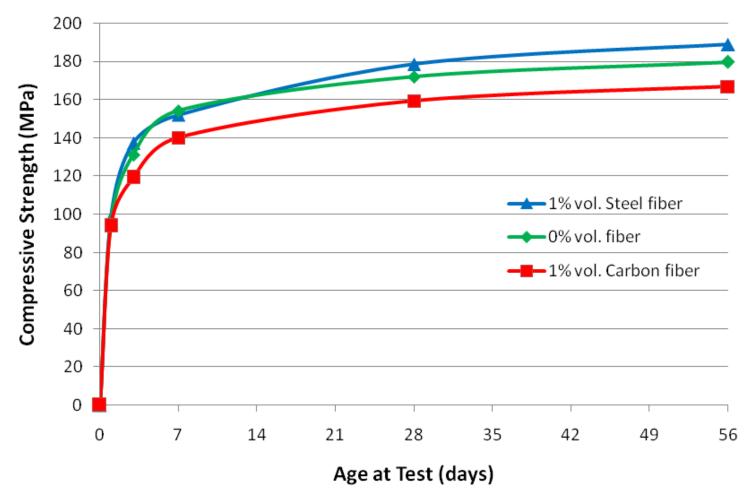


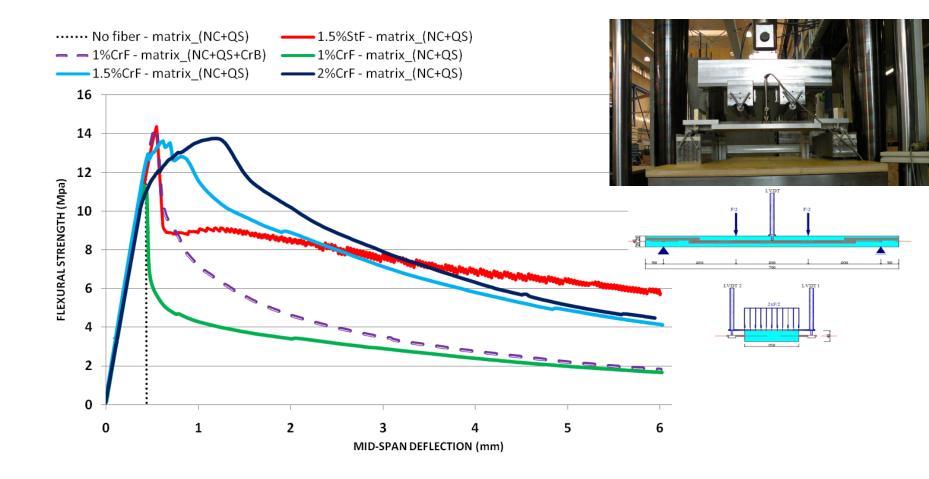
Faser Optimierung

Ausziehversuch: Verbundfestigke it = 10-12 MPa

Stabilität der Faserbündel

Formstabilität der Fasern während des Mischprozesses


Einfluss der Makrocarbonfaser auf die Verarbeitbarkeit des UHPC



Druckfestiakeitsentwickluna

Spannungs-Durchbiegungskurve im Biegezugversuch 40mm x 150mm x 700mm

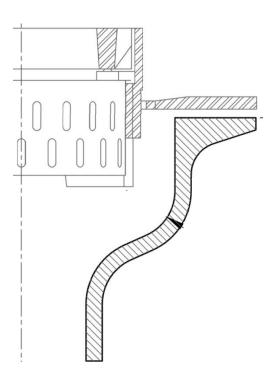
HAFTZUGVERSUCHE

HAFTZUGVERSUCHE

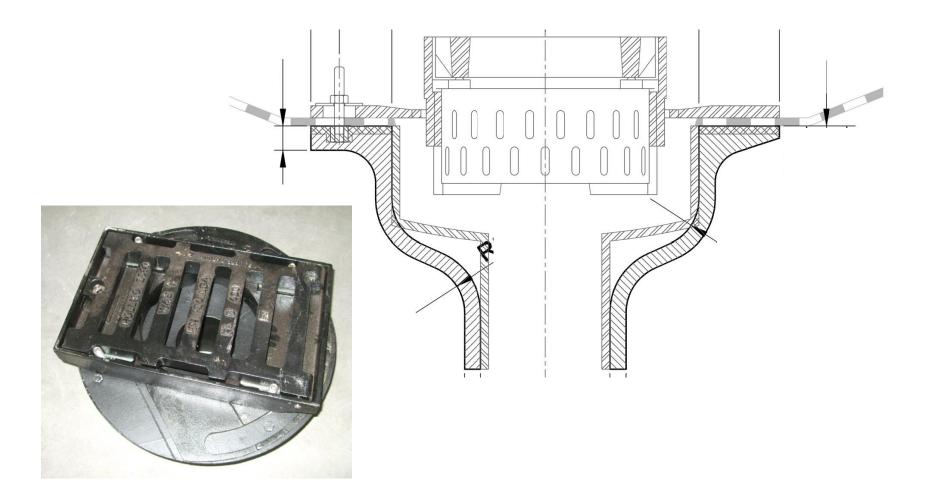
Tabelle 3.3 Haftzugfestigkeit je nach Oberfläche

(Schalungs-) Oberfläche	Mittelwert [N/mm²]	Standard- abweichung [N/mm²]	5% Fraktile ^a [N/mm²]	Bruchfläche (% der Fuge sichtbar)
Styrodur (gefräst)	3,07	0,12	2,87	Normalbeton
Sandgestrahlt (2x nach vier Tagen)	2,25	0,41	1,58	Fuge (~37%)
Sandgestrahlt 2 (1x nach einem Tag)	1,42	0,38	0,79	Fuge (~57%)
Glatt	0,71	0,28	0,25	Fuge (~84%)
Gusseisen	0,16	0,15	_b	Fuge (100%)

^a 5%-Fraktilwerte errechnet nach: Mittelwert – 1,645 x Standardabweichung


- → Haftzugfestigkeit von UHPC-Sandgestrahlt um Faktor 10 besser als Gusseisen
- → durch Sandstrahlen kann Wert von mind. 1,50 N/mm² erreicht werden

^b keine Aussage aufgrund der großen Streuung und geringen Anzahl der Ergebnisse.


KONSTRUKTIVE ANFORDERUNGEN

- Flanschbreite 100 mm
- Entlüftung sicherstellen
- Abstand von UK Ablauftasse bis UK Konstruktionsbeton mind. 70 mm
- Durchmesser Ablaufstutzen mind. DN 150
- Gewicht max. 25kg
- Oberfläche innen glatt, außen sandgestrahlt (Dauerhaftigkeit)

FORMGEBUNG

HERSTELLUNG

VORBEREITUNGEN ZUM EINBAU

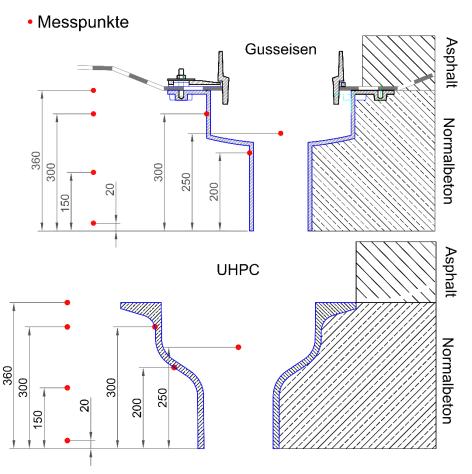
Ausbau

VORBEREITUNGEN ZUM EINBAU

IM EINBAUZUSTAND

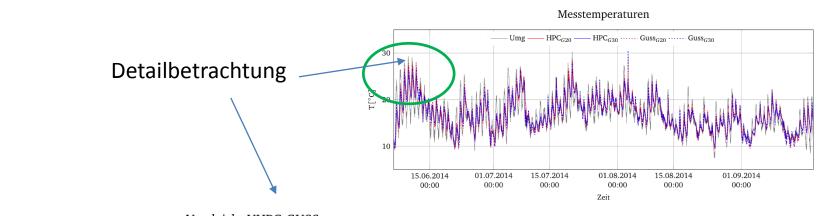
Messanlage

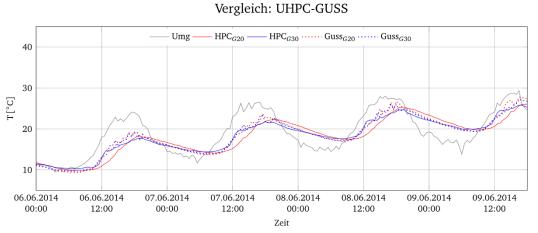
IM EINBAUZUSTAND



MESSSCHEMA

Temperaturmesssystem:


- Jeweils 7 Temperatursensoren
- Ermittlung des Temperaturfeldes im Bauteil
- Messung der Abflussinnentemperatur
- Messungen direkt an der Bauteilfuge

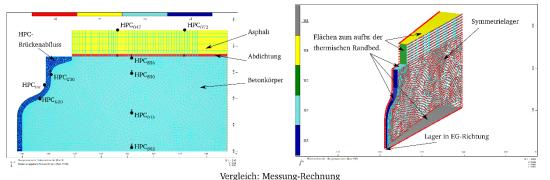


ERGEBNISSE DER MESSUNG

Temperaturunterschiede in der Fuge im Jahresgang vernachlässigbar

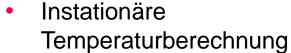
numerische Untersuchungen für den Grenzfall d. abrupten Abkühlung

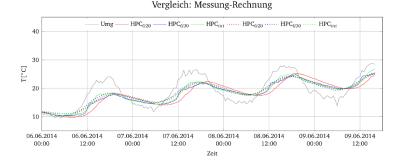
→Eisregen im Sommer



KALIBRIERUNG DES FE-MODELLS

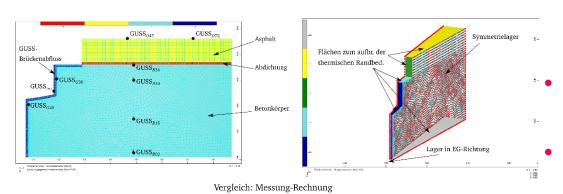
UHPC-Ablauftasse

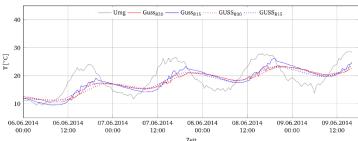

T[°C]

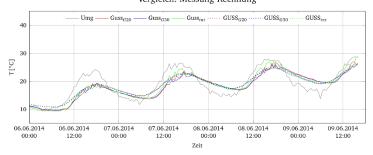

06.06.2014

- Zwangfreie Lagerung
 - Thermische Eigenschaften von UHPC / Normalbeton/Asphalt
- Umg HPC₈₃₀ HPC₈₁₅ ... HPC₈₃₀ ... HPC₈₃₀ ... HPC₈₁₅

 07.06.2014 07.06.2014 08.06.2014 08.06.2014 09.0



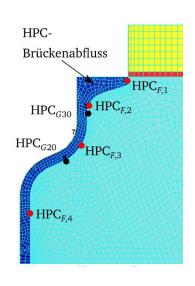

→ gute Übereinstimmung der Mess- und Berechnungstemperaturen

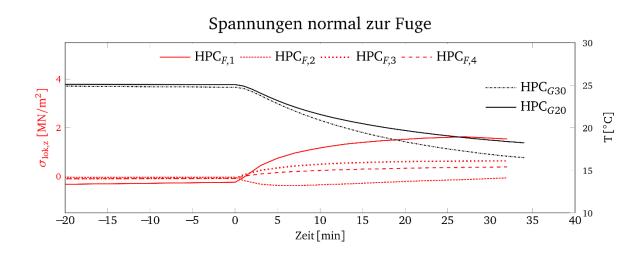

KALIBRIERUNG DES FE-MODELLS

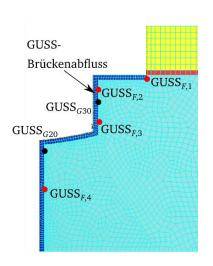
Gusseisen-Ablauftasse

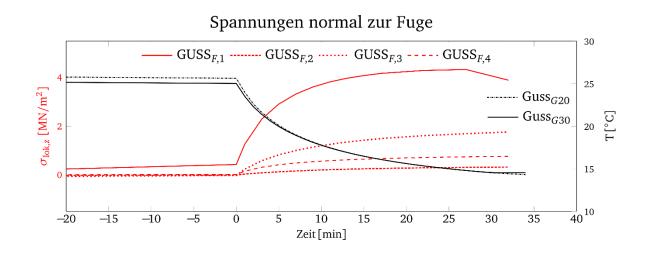
Vergleich: Messung-Rechnung

Zwangfreie Lagerung


Thermische Eigenschaften von Gusseisen / Normalbeton/Asphalt


Instationäre
 Temperaturberechnung


→ gute Übereinstimmung der Mess- und Berechnungstemperaturen



SPANNUNGSBERECHNUNG

SCHLUSSFOLGERUNGEN

- UHPC Brückenentwässerungstopf ist möglich, Wanddicke ca. 1,5 cm sinnvoll
- Geringeres Eigengewicht: leichter Einbau
- Höhere Haftzugfestigkeit mit umgebendem Beton: Reduzierung der Umläufigkeitsgefahr
- Geringere Spannung im Übergangbereich infolge der besseren thermischen Eigenschaften
- Keine Korrosionsgefahr
- Weitere Erkenntnisse aus laufenden Monitoring
- Grundlagen für eine industrielle Herstellung vorhanden

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT!

Univ.-Prof. Dr.-Ing. habil. Nguyen Viet Tue

Technische Universität Graz Institut für Betonbau

Lessingstrasse 25 A-8010 Graz Telefon: +43 (0)316 873 - 6190 Telefax: +43 (0)316 873 - 6694

E-Mail: tue@tugraz.at URL: www.ibb.tugraz.at